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COMPUTATION OF THE SOUND ENERGY RADIATED FROM
TURBULENT FLOWS®

' %%
J. C. Rotta

1. Introduction

The wave equation developed by J. M. Lighthill [1] forms the /4

foundation for determining the acoustic energy radiated by turbu-

lent fields. This equation states that the velocity fluctuations

of a turbulent field in a mediﬁm at rest produce pressure and

density fluctuations just like pulsating quadruples known from
classical acoustics. However, the most important problem is to

relate the intensities and distribution of the acoustic source

terms to known parameters of the flow field. The strict solution

of this problem is identical with the solution of the turbulence)

problem.

Many authors have attempted to obtain information regarding
the properties of turbulent fields using theoretical methods.
However, only a few papers are known in which the investigations
led to quantitative results. The paper given here deals with

the problem of determining the acoustic source distribution from

%
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the distribution of the average velocity. This problem has
considerable practical importance. A request was made to complg—
ment experimental investigations of the acoustic source distri-
bution in turbulent jets (see the work of F. -R. Grosche [2])

by theoretical work.

The problem is solved in two steps. In the first step, the
acoustic sources are determined from the solution of the Lighthill
equation. An appfoximate method is used to determine the solu-
tion as a function of other field variables of turbulence, in
particular, the kinetic energy of the velocity fluctuations and
a characteristic length measure. In the second step, the vari-
ables are calculated using the transport equation for the kinetic
fluctuation energy and other relationships, which are assumed to

be known from the distribution of the average velocity.

2. Solutions of the Lighthill Egquation /5

We are interested in the far field of the acoustic energy

radiated by a region of turbulence having finite dimensions. Let

P (X/X, y) dy (1)
be the acoustic power, which i1s radiated by a volume element

dy (= dyq ng dy3) having the position y per unit of solid angle

in the direction of the vector X. The quantity X = ]X|{is the
magnitude of the distance from the observation point tgthe tur-
bulence region, and we assume that the dimensions of the tur-

bulence region are small compared with X.

When the quantity P (X/X, y) is known, the total acoustic
intensity at the position X is obtained by integration over the
entire turbulence region.



Using the Lighthill wave equation, the solution of which is
represented in terms of retarded potentials, we obtain the fol-

lowing approximation for P (X/X, y) (see H. S. Ribner [3, 4iy:
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This notation is based on the representation in the Cartesian
coordinate system X, (i =1, 2, 3). The Einstein summation con-

1/2].

vention is adapted for indices which occur twice [X = (XiXi)
A refers to the vélocities (average value and fluctuation value)

at the location X;}iﬁﬂvi are the velocities at y + r. The inte-
gral extends over the volume of the entire gfspage, dr = drldrzdr3]

In addition, a, is the speed of sound, and Py is the density of

the surrounding medium. Equation (2) contains the following

assumptions:

1. In the medium surrounding the turbulence region, the
small effects of heat conductivity and viscosity

are ignored.

2. Outside of the turbulence retion, the motion is so small /6

that the acoustic sources in the Lighthill equation can

Be set equal to zero (62 Tij/6t2 = 0).

3. The average temperature in the tﬁfbuleﬁéé>fiéid is_not |
very different from the temperature of the surrounding

medium.

4, The deviations from the adiabatic state conditions

in the turbulence field are ignored.



5. The Reynolds number of the flow is large.

. B _ _,vi ‘2‘1/2
6. The Mach number is small (Ma = [v™] /a).

When the usual division of the velocities into an average
value a; and a fluctuation velocity Ug is made in Equation (2),
v. = u. +u, o
i it (3)

we obtain two different components for the radiated acoustic
energy. The first part is produced only by interactions of
fluctuation velocities, and is called "eigensound" (self noise).
The second part is produced by interactions of the turbulent
fluctuation velocities with the average velocity. This part is
called "shear sound" (shear noise).

2.1. Self noise

The summations of expressions of the type Xivi/X"vaj/X’

etc., contained in (2), state that only velocity components}

in the direction of the vector X have an effect. It is there-

fore appropriate to write the following for the self noise

2"'
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where U, and_uX' are the respective veloclity fluctuations in-

the direction X. I. Proudman [5] gave an. estimate of the self
noise radiated by an isotropic turbulent field. Such a turbulent
field radiates sound of equal intensity in all directions, so

that P_ is independent of X/X. From a dimensional analysis, we

can specify the form



r =% (5)

where u2 is the mean square value of the velocity fluctuations

which is equal in all directions. Ll is the integral length

measure (integral over the twb—point correlation function)

(see [6]).
© ~
Jr f (r) dr .
(6)
o S

The calculation of the quantity o requires a number of assump-
tions and long algebraic calculations, which do not have to be
repated,here. First, the cumulants of fourth order are ignoredg
so that the correlations of four velocity components can be ex-
pressed as products of correlations of two velocity components
each. The time derivatives are determined using the Navier-
Stokes equations of motioﬁ. Again, the fourth order cumulants
are ignored'in order to eliminate the fluctuations of pressure
in the equations. According to Proudman, we find the following

results for a steady turbulence field

o o ‘o -
j (fG) \ dx --I%-f df Gf"G dx!

T -f—(j-_[(](f(;)+4-f—q]}x4clx . (7)
e e dR T dx X o
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and x = r/Ll. The numerical evaluation of this formula resulted

in a = 37.5, using the function)f tabulated by I. Proudman [7]

for very large Reynolds numbers.

%;2::&@?@?E_Qpisew

For the case of shear noise, we assume a simple, steady
shear flow in which the average velocity u has the direction of

the Xl axis and is a function of x2. If (3) is substituted in

(2), then only those components in which i, j, k or I take on
the value 1. will make a contribution to the shear hoise. H. 8.
Ribner [U4] showed that most of these terms drop out, because of

continuity or symmetry.

We obtain the following from (2) for the radiated acoustic

power:
D o} x 4 o u. 0 u'
| X vy el la=d) | Tut —s L gr
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-+ 16a a g ot (o] :
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Again, the flow velocities must be taken at the point y and

quantities having a bar must be evaluated at the point y + r.

If we also assume the isotropic tensor form for the corre-

lation function (62 ui/dtg)(62u3/6t2), then we have®

¥ _
Strictly speaking, it{ is sufficient for the correlation function
to have an axisymmetric tensor form with the axis X5

-
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P_ (\/\ 3) = (11)

According to the present state of knowledge on the structure of
turbulence, the assumption of an isotropic form of the twojp01nt\
correlation seems to be almost the only way which will allow a
quantitative evaluation of the integral. The direction depend-

ence of PS is then only expressed in the factor

}xl4-k.'x

XA-J : | (12)

.2
1

w ™

Tk (X/X) =

(0 £k £1). In the case of axisymmetric flows, the direction

of the vector X is described by angular coordinates. It 1is then
possible to average over the azimuth angle, and we obtain the
directional dependence obtained by Ribner [4]

4 2
. T, cos @+ cos &
k(éjk) = ) T (13)

if © is the angle between the vector X and the jet axis.

The integral expression can belrepresented in the following

form based on dimensional analys1s

» b"u]. Ozu'i - - [_—)3 |
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where the coefficient B depends on the distribution of the aver-

age velocity.. In contrast to a in (5), it is a function of

‘\
=
O



position for a given flow. In this way, Equation (11) is re-

duced to the form

| — 3
L P 2
v ) = O ey B =2 (ul)

P/ y = Seyx Ly R A (15)

The calculation of B uses the same assumptions and restrictions
as were used for o in (5). We can again use the relationship
given by Proudman. After a few calculations (see Appendix A),

we obtain

‘ 0. e .
. L .
B=27rf ")l (v, r) —-1“ (x)+1“]+9)2 (y, r) I"(x)}x dx |\ (16)
o e e —— e - ' [ PR
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: Bt T+l x2) £ U (y- L x2) X
¢, ¥y, r) =f[ T _ - ]z dz (20)
e uly) ;

G and £ have the same meaning as in Equations (7) and (8). The
numerical evaluation is again based on the correlation function

given by Proudman [7] for large Reynolds numbers.

As can be seen from Equation (19) and (20), the distribut-

tion of the average ve1001ty 1nfluences the value of B, in

o '
.. oA



paftiéular because of the local curvature. For negative /11

Gzﬁ/6y2, that is, along the free jet axis, we find positive

B. For positive 626/6y2

, 1.e., at the outer edge of the jet, we
find in part very large negative B values, which do not have any
influence because of the low fluctuation energy and low average

velocities at this point.

3. Kinetic Energy of the Fluctuation

Velocities

In the previous section, we treated the dependence of the
radiated acoustic pbwer on the kinetic energy of the velocity
fluctuations and an integral length measure. We will now inves-
tigate the question of how the distributions. of the kinetic
fluctuation energy and the length measure are»related with the
distribution of the average velocity. Recently, many attempts
have been made to calculate the distributions of the average
velocities using the transport equation for the kinetic fluctua-
tion energy or other transport equations. These methods provide
as a side result the field quantities which are required for
estimating the acoustic sources. However, there is also the
possibility of calculating the distribution of the kinetic fluc-
tuation energy, if the distribution of the average velocity is
khown. The principle is to calculate the normal component of
the average velocity using the continuity equation and to also
calculate the shear stress distribution using the equation of
motion. The quantities obtained in this way are then introduced

in the energy equation. The transport equation for the kinetic
S !

2 + w2)/2 is as follows for

large Reynolds numbers using the ﬁﬂual boundary layer simplifi-

N \
fluctuation energy q2/2 = (u2 + v

cations (see [6])
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where

: 2
rrer AR S I ] :
v 0y4 ¢+yj Sy [y(z-l-p)v : 0,? (21)

1 for axisymmetric flows

('R
I

and

o

j = for plane flows

and we have set p = 1.

If we desire to calculate the distribution of q2/2

for known average velocity fields and known Reynolds|stress - u'v',

then it is necessary to introduce trial solutions for the turbu-

lent energy dissipation € and for the turbulent energy diffusion’

| )

Hl

(q2/2 + p)v. We can use the following relationships for these

two quantities
P
v= Q[qf[2],'/LMT'7 (22)

eV |2 2

(q”/2+ p)v = -k Nq /2L d(q~/2) /sy
,qA/ -,/,/__ (23)

where L, the length measure of turbulence, is a field variable

and kq and ¢ are dimensionless coefficients. In order to be
able to solve Equation (21), ¢ and kq must be known, as well as

the distribution of L. }The system of equations is determined by
adding another relationship for u v, which however cannot contain
any other flow parameters as variables. We will use the follow-
ing exchange trial solution of L. Prandtl [8] for this rela-
tionship

10
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TV - -k q%/2 ©. va/ oy

(24)
where k is another dimensionless coefficient. If we assume that

¢

k is known, then'the"quantityf«q2/2 pyi§”ééicﬁ1éted"ff6ﬁ the velo-|

city field by inverting Equatioﬁ (24). This means that L can be
eliminated from (22) and (23), so that (21) is transformed into

a partial differential equation for q2/2 after (22) and (23) are
introduced. We obtain the fiollowing relationship from the re-
quifement that in the vicinity of fixed walls, the relationship |

must be compatible with the universal velocity law. /13

TEICI U I (25).

We reported on this method of calculating the kinetic fluctuation
energy and the length measure elsewhere [9]. As example, we
treated the fully developed pipe flow, the plane asymptotic wake
flow and the plane free jet in a medium at rest. Here we will
give the results for the round free Jjet in a medium at rest and
the results for the free jet boundary. Detalls of the calcula-

tion are described in Appendix B.

L., Results and Discussion

Figure 1 shows the distributions of the kinetic fluctuation
energy and of the length measure for round free jets in the di-
mensionless form as a function of y/b for various values of the

coefficient kq of energy diffusion. u, 1is the average velocity

1
along the axis, and b is the radius at which u = ul/2. In the
inner region, the distributiions only slightly depend on kq. As

kq increases, there is a greater distributionof the| energy. The

11



calculated values of q2/(2u§) are about 20% lower than those

determined in measurements of I Wygnanski and H. Fiedler [10].

Figure 2 shows

the distribution of

q2/(2u§) and L/x for

the free jet boundary

as a function of

£ = gy/x, where o =

12| ) ug ;s the velo-

city at the nozzle

exit. The distribu-

tion of the average
velocity is also : e ——

y 1 - RF M_m_::L,, /) Y10
shown. The variation ; E D L i
of k_  has the same B I e
effect as for a free : - Q4 - ae 12 25. 20./b'24
"jet. The values of Tt ceeemes s I A
5 5 Figure 1. Round free jet in surround-
q /(2uo) agree well ings at rest b/x = 0.88; ¢ = 0.165
with the ex erimental a — distribution of the fluctuation en-

1 p ergy; b — distribution of the length

results of I. Wyg- measure

nansky and H. Fiedlerj
- [11].

The distributions of the length measure are approximately

. constant over a wide range, but increase quite suddenly near the

edges. This phenomenon becomes more pronounced, thelsmaller kq. /14

As already determined in an earlier work [9], the agreement]

between computation results and experiment is good in many cases.

12



In other cases it is not as -

good. It is possible that 1 ?/ZUDZW
better results could be ob- ; . /6?\\
tained if the exchange law { //'T\Q
(24) is replaced by the trans- ﬁ p//’- ‘\
port equation for the Rey- } '“i(azﬁf_'ﬁg b 220
nolds shear stress. This . ' \\}5 Q§&i‘)3 '
question remains to be in- H 010(\\ Ubktgzgzi:j
vestigated. "0
g \\0;3\45

004

When calculating the : |w>/ '\\\\\
acoustic source distribu- 003r %ﬁ, %=2b 10
tions, it is necessary for ' o

the length measure L in the o ' o0}

energy equation, i.e., in
Equations (22), (23), and
(24), to correspond to the

. - o8 18, %
16 | 0,8 | 0 08 dy/X .

Figure 2. Free jet boundary

integral for the transverse ._.(um'_= 0), o = 12, ¢ = 0.165]

correlation function as given
in the definition. Therefore)

it will be half as large as L the integral over the length cor-

l.’
relation function. Therefo%e; we set
' ’ \

LL1 =.2L’ | (26)

The mean square average of the velocity fluctuations which occur
in (5) and (15) is expressed in terms of the kinetic energy of
the fluctuations:

.2 2 2 .
S T o 2 R
=2 aq /2

(27)

The quantity P (X/X, y) is transformed into a suitable form for
a dimensionless representation of the radiated acoustic energy.
For the free jet, we write

13



118.
p Ly

P(X/X, y) =

3 \/\)I(y/b) i (28)
' a ‘b
for the free jet boundary
' 8
P (X/X, :\_)=-—-———k(\/\)1()'/-\)
| a’x (29)

where the directional coefficient k (X/X) for the self sound o/
is k = 1.

Figure 3 shows the dimensionless distributions of the self- /15

sound,/sources I, (y/b) and the shear:sound fsources I, (y/b). The

sound sources concentrate along the jet axis, as was to be ex-
pected. The shear soqu?has a much smaller intensity according
to these calculations than does

the self sound.f’This is in E T M R
; ,.,-ﬂ~\\

contradiction to the estimates rjd0515~mﬁ¥~

of H. S. Ribner [4], according

to which the peak value of the

shear sound)is approximately

equal to the peak value of the

self sound./ Because of the

very different assumptions, : I, \\
it is not possible to make a L —f X
direct comparison. I
i 0 - 05 10 15
P _ , ylb

The calculated distribu-

tions of the sound sources are Figure 3. Distribution of
the acoustic sources in the
round free jJet, kq =1, ¢c =

0.165

given in Figure U4 for the free \
jet boundary. The self noise

is produced in a relatively

14



narrow region in which the ‘ -

gradient of the averaged velo- f \
; 12

city is the steepest. The

shear sound Jsources I, have ;

positive as well as negative

values because of the course ¢

of B. Compared with the self

- sound! sources, they are con- i

siderably smaller than in the '
case of the free jet. This

behavior must be attributed

| bylx

to the fact that the sign

change of B (approximately at

Gzﬁ/Gy2 - 0) occurs in the re-
gion of maximum fluctuation jet boundary, o = 12,
intensity. The following re- _ c = 0.165
marks can be made regarding -

these calculétions:

Figure 4. Distribution of the
acoustic sources in the free

kg = 1,

1. The influences of convection of the vortex structure

and of refraction by the flow field were not considered

in the results discussed above. This means that ex-

tremely small flow velocities have been assumed.

As

Lighthill, Ribner, and others have shown, these effects,
which change the inténsity and direction characterics of
the acoustic radiations significantly, can be approxi-
mately taken into account by means of correction factors.
We will not discuss the details - of this.

The division into "self sound" and "shear sound" made in
Equation (4) and (9) 1s somewhat arbitrary. The corre-
lation functions in (4) and (9) depend implicitly on

the average velocities and their derivatives becausie of

15
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equations of motion. If a calculation is made according
to I. S. F. Jones [12], in which the time derivatives
under the integral of (2) are substituted into the equa-

tions of motion before decomposition of the velocities

~
=
(@)}

into a mean value and a fluctuation value, one obtains

|

completely different results for the shear sound than .
what was obtained above, which was based on Ribner's /[
work.

Reservations about the preceding calculation can be made
based on the fact that the average velocity was ignored
and isotropic distributions were assumed 1n the deter-
mination of the time derivatives. One point of view
which supports these assumptions 1s the fact that 75%

of the calculated self sound emerges from an area in
which the correlation function f is larger than 0.76.

As 1s well known,é&iﬂassumingflarge Reynolds numbers,
there is a universal and locally isotropig structure
which is only infliuenced slightly by the average velo-
city. Conditions are not as favorable for the shear
sound, but the contributions for this case are relatively
small. These arguments do not mean that no substantial
contributions could be made, because of the effect 6f
averaged shear velocities and the consequent)change in
the turbulence structure. The simplifications made are
accepted because at the present time they represent th@

only way of progressing towards quantitative results.

Aééording to experimental investigations, there are other
ordered types of motion in addition to the unordered tur-
bulence motion. Such vortex shapes are quite clear in
flow photographs within a mixing region having large
density differences. G. Brown and A. Roshko [13] have



shown this. According to the work of A. Michalke [14],
H. V. Fuchs [15], as well as K. A. Bishop et al. [16],
‘these motions cohtribute significantly to sound produc-—
tion, especially at high flow velocities. These con-
tributions are not described by the methods mentioned
here. Unfortunately, we were not able to use the theo-
retical developments of Michalke. We hope that perhaps
later on it will be possible to construct a useful wave
model for the acoustic production, using turbulence
variables established by means of the transport equa-

tions for kinetic energy and Reynolds stresses.

In light of these arguments, our investigations can only
be looked upon as a first attempt of determining the acoustic
energy radiated by turbulent fields, once’the corresponding
distribution of the average velocity is known. We hope that we
have generated some interest in this problem. Further work,

using refined assumptions, iQnecessary.

5. Summary

We calculated the acoustic source distributions in turbu-
lent flows for the case where the averége velocity'distribution
was known. The basic i1dea is to-detérmine characteristic vari-
ables using the ﬁransport equation}}ﬁﬂthe kinetic energy of the
fluctuations and ofher relationships. These characteristic
variables describe the turbulence structure. Starting with the
Lighthill equation, weAg}presSed_yhg";aqggped acoustic energy as €|

function of the kinetic fluctuation energy, an integral length
measure and the distribution of the average Velocity. These
calculations in which the relationships for iscotropic turbulence
fields were used continue the investigations of I. Proudman.

As an illustration, we applied the relationships to a round free

jet in a medium at rest and to the free jet boundary. The

17
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calculated distributions of kinetic fluctuation energy of the
length measure and the acoustic sources. are discus'sed and a

critical evaluation of the physical assumptions is made.
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APPENDIX A: SHEAR NOISE

When the quantity B is determined in (15), we will for the
most part use the relationships of I. Proudman [5]. The equation
numbers of this paper [5] are given by means of double brackets.
We start with the isotropic, tensor form

2 2 . -2

E ° B ° uj ) Ozu‘. I 1 - 1 '
‘ 5 5> S\ T3 ) [—5-; ¢ Pir"+ (721‘ ¥ +¢P)51. « | (A.1)
T T ((5.2))

i

Y is a dimensionless function of the distance rj. Primed values

refer to derivatives with respect to r. Then we have

N D - - - . .-

“ 2 \2 T2 | i
ﬁ ou TR K11 f > 4 pn 4 g 1L d ony 420 (A.2)
( 2) viomew (Ot ) '["’,dr R )] ((5.17))
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and also, according to ((5.9))

5 2

> 9 ' _' ' .o
é‘l = . = - 2 . d M '." f' - = _(u ) fG
4\('6'{) 9,.. = - (u )_ f*—dr&(f t fl—r) . [.3 | ,
R B

where G is the expression defined by Equation (8) (x = ﬁ?Ll).

It follows

(Ou) o = Ou Jf Q' dr =.

—————

If these relationships are substituted in (A.2), we obtain

) ‘ —
2: 4% D)
0%u (u™)
w?/ L
with
. o i -
. Al a [ dad £G;
Il ._.......: - ——neme ———— .'—-'. .
() =5 = cfrcagul [dx (m?*‘x'] ) (A.6)
X S ‘

Also, we find

9 2 03 T—3

After substltutlng (A. 5) and (A 7) in (A l), we then find

2 2 —3 : R

ouy 0 u; (uz) {- g Iiri 1

» A R e - F1(x) =— + F'(x):m-l“(x) } .
jmz ot® 1] Ya, Lz | Vil [ oo

and for the special case
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: 2 r - '

L 1o ) [ [X 1

_ 1“(xw~-- ]+I?M)}.' A.
ot ot?  Li 1 L2 2fo . A9

In order to carry out the integration of (14), we introduce

spherical coordinates:

) rll =r sin_&sih(p,.‘ |
. Ty = rcos 9, '; o (A.10)
vd_!: = rZgin & dodddr .,

Here ¢ varies over the range between 0 and 2 7 and‘s‘varies over
the range from 0 to m. We will make the substitution z = cos
so that

R
n

:rz(i-zz)shlz¢,;':'

el
u

oI Tz, T - (A.11)

/

dr = -2 ‘dcp'dz dr

and z runs from 1 to - 1. We can first carry out the integration

over ¢. Since because of the continuity equation

- 02 2
: | ul_o‘pl. N _
. -_..f;;_. . 2 d"-\- 0 , (AolZ)
ot ottt

01

we introduce the following auxiliary functions for the integra-

tion over z:
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:.. 1 Il_(\"' )',)) + E (u\" - 1-,))‘ . . K | N -
\ ¢1(\, r) = f[ — - - 2] dz -
- B eu(y) L -
l_“ . | (A.13)
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and we then obtain the expression given in Equation (16) for B./

APPENDIX B: KINETIC ENERGY OF THE FLUCTUAi}
' TIONS

1. Round free jet

The well developed round free jet propagates linearly
with distance from the exhaust point, and the distributions of
the statistical quantities are similar at all intersection points

perpendicular to the jet axis. The reference velocity Uy is

the averaged velocity along the axis and the reference length is
the radial diStanée from the axis, in which the average velocity
u equals ul/2. This means that
b= ax . (B.1)
According to experimental results, we have set o = 0.088 for the
constanq._Using n = y/b, we describe the average velocity by

U= u f (n). The same relationship for f (n) was used as for

the plane free jet (see [9]):

£(n) = exp | - 0, 6749 n° (1+0, 0269 n“)ﬂ “(B.2)/
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We assumed the following trial solutions for the fluctuation

energy q2/2 and the length measure L

——

qﬁz=uf¢(m; L=bA(n) (B.3)

where ¢ (n) and A (n) are dimensionless functions of n. | Using
the similarity trial solutions, the partial differential equa-
tions‘for the average velocity aﬁd the fluctuation energy become
ordinary differential equations, which can be solved using a
Runge-Kutta method (see [91).

2. Free jet boundary

The width of the turbulent mixing zone of a plane free jet
boundary also grows linearly with distance from the exhaust point.
The reference length is the distance x from the exhaust point,

and the reference velocity is the exhaust velocity u, - The dis-

tribution of the average velocity u is assumed in the form

u = -uo'il‘q. (l:;) I (B.Ll)

with £ = oy/x. o is a constant. We assumed the following ap-

proximation for F (&)

1+erf {2(e+1) ]
14 erf (2)

T (g') = 1.. -%- [1k~l~erf‘_(0, 9 g)]
' S (B.5)

..

o+ VO, 0.3 g4 e,x;;.-'('- gz) [l»l- erf{0,8(£-0,38) f]

This relationship agrees well with the measurements of H. W.
Liepmann¥, if we set o.= 12.{ In addition, we introduced the

following similarity trial solutions:

*
See H. W. Liepmann, John Laufer Investigations of Free Turbus
lent Mixing, NACA TN No. 1257 (1947).
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’\-l. = 0 (ﬁ)o 'R

e iwé) | o

2 - .6
a2 = wleie, | r (5-6)
Li = "thg) - _ )

With these trial solutioné, the partial differental equations for
the .flow are again reduced to ordinary differental equations,

which can be numerically integrated using a Runge-Kutta method.

Translated for National Aeronautics and Space Administration un-
der contract No. NASw 2483, by SCITRAN, P. O. Box 5456, Santa
) Barbara, Californisg, 93108
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